Getaran

Getaran adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak ada gaya yang bekerja pada benda tersebut. Getaran mempunyai amplitudo (jarak simpangan terjauh dengan titik tengah) yang sama.


Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.

Jenis getaran

Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.

Analisis getaran

Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai “jumlahan” model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.

Getaran bebas tanpa peredam

Model massa-pegas sederhanal

Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang mempengaruhi massa (getaran bebas).

Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum hooke, atau bila dirumuskan secara matematis:

 F_s=- k x \!

dengan k adalah tetapan pegas.

Sesuai Hukum Ke dua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:

 \Sigma\ F = ma  =   m \ddot{x}  =  m \frac{d^2x}{dt^2} =

Karena F = Fs, kita mendapatkan persamaandiferensial biasa berikut:

m \ddot{x} + k x = 0.

Gerakan harmonik sederhana sistem benda-pegas

Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:

 x(t) =  A \cos (2 \pi f_n  t) \!

Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:

 f_n    =   {1\over {2 \pi}} \sqrt{k \over m} \!

Catatan: frekuensi sudut ω (ω = 2πf) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi “standar” (satuan Hz) ketika menyatakan frekuensi sistem.

Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.

Getaran bebas dengan redaman

Mass Spring Damper Model

Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)

 

 F_d  =  - c v  = - c \dot{x} =  - c \frac{dx}{dt} \!

Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan

m \ddot{x} + { c } \dot{x} + {k } x = 0.

Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.

Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:

c_c= 2 \sqrt{k m}

Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah

\zeta = { c \over 2 \sqrt{k m} }.

Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.

Solusi sistem kurang redam pada model massa-pegas-peredam adalah

x(t)=X  e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t - \phi}) , \    \ \omega_n= 2\pi f_n

Nilai X, amplitudo awal, dan φ, ingsutan fase, ditentukan oleh panjang regangan pegas.

Dari solusi tersebut perlu diperhatikan dua hal: faktor eksponensial dan fungsi cosinus. Faktor eksponensial menentukan seberapa cepat sistem teredam: semakin besar nisbah redaman, semakin cepat sistem teredam ke titik nol. Fungsi kosinus melambangkan osilasi sistem, namun frekuensi osilasi berbeda daripada kasus tidak teredam.

Frekuensi dalam hal ini disebut “frekuensi alamiah teredam”, fd, dan terhubung dengan frekuensi alamiah takredam lewat rumus berikut.

f_d= \sqrt{1-\zeta^2} f_n

Frekuensi alamiah teredam lebih kecil daripada frekuensi alamiah takredam, namun untuk banyak kasus praktis nisbah redaman relatif kecil, dan karenanya perbedaan tersebut dapat diabaikan. Karena itu deskripsi teredam dan takredam kerap kali tidak disebutkan ketika menyatakan frekuensi alamiah.

 

Satu Tanggapan

  1. asslamualaikum..
    boleh tau ga referensinya dari mana?

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: